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Abstract. Motivated by the aim of finding generalized transformation coefficients for the
symmetric group, we calculate the matrix which transforms the basis functions of the Young–
Yamanouchi basis into the basis functions of its dual. Our approach is to derive the representation
matrices for both bases and then determine the transformation matrix. The dual basis is associated
with the subgroup chainS1 × Sn−1 ⊃ S1 × S1 × Sn−2 ⊃ · · ·, whereas the usual YY basis is
associated with the subgroup chainSn−1 × S1 ⊃ Sn−2 × S1 × S1 ⊃ · · ·. A combinatorial
technique,jeu de taquin, is used to define theYY basis, via the Young–Yamanouchi symbols
and Young tableaux with which the basis functions can be indexed.

1. Introduction

Representations of the symmetric group,Sn, the associated matrices, characters, and
basis functions, play an important role in the study of the many-electron problem in
physics and quantum chemistry. A common choice among the wide range of bases is
the Young–Yamanouchi, or YY basis (see [1–4]), associated with the subgroup chain
Sn−1 × S1 ⊃ Sn−2 × S1 × S1 ⊃ · · · ⊃ S1 × S1 × · · · × S1. The aim of finding generalized
transformation coefficients for the symmetric group motivates us to calculate a special case.
We calculate the matrix that transforms between the basis functions of the YY basis and
what we shall call its dual, theYY basis. This basis is associated with the subgroup chain
S1 × Sn−1 ⊃ S1 × S1 × Sn−2 ⊃ · · · ⊃ S1 × S1 × · · · × S1.

The YY basis is defined by a chain of maximal subgroups. Restrictions of generic
basis functions of irreps ofSn will give a non-reduced basis for subgroups. The YY
basis functions corresponding to the irreducible representations (irreps) ofSn are also basis
functions of irreps of the subgroupsSn−1 × S1, Sn−2 × S1 × S1, . . .. The irreps of such a
direct product group can be expressed as the direct product of irreps of the factor groups.
The only irrep ofS1 corresponds to the one-dimensional unit matrix which is 1. Therefore
the irreps of the subgroups in the YY basis can be simply labelled using the first factor of
the subgroup. Each function can thus be identified with the irreps to which it will belong
in Sn, Sn−1, Sn−2, . . ., and this identification corresponds to the unique Young tableau with
the property that the successive removal of the boxes labelledn, n − 1, . . . yields Young
tableaux that correspond to the irreps ofSn−1, etc.

A more general set of basis functions would correspond to the basisSn1 × Sn2 × · · · ×
Snl

, n1 +n2 + · · ·+nl = n. In this subgroup basis the matrices of elements in the subgroup
are direct sums of tensor products of matrix irreps of the factor groups (up to a permutation
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of the basis). The YY basis is the specific case of this whereni = 1, ∀i > 1. We want
to look at transformations between the YY basis and the more general basis where theni ,
i > 1 need not be equal to 1.

This problem is equivalent to looking for the matrix that transforms betweenSm1 ×
Sm2 ×· · ·×Smk

andSn1 ×Sn2 ×· · ·×Snl
wherem1 +m2 +· · ·+mk = n1 +n2 +· · · nl = n.

This general problem has been considered by [4–6] among others. However, as Horie’s
method is recursive, and Suryanarayana and Kondala Rao have a closed formula only for
representations of the formλ = 2a1n−2a, there is still a need for other methods. The
techniques we present here provide a straightforward and easily explained approach to
a specific sort of basis transformation, and we can avoid the Young operator techniques
employed in other approaches.

In this paper we determine the transformation matrix for a specific case of the general
transformation mentioned above. That is, for the transformation between the YY basis
and its dual. Our approach is to derive the representation matrices for both bases and then
determine the transformation matrix. Since any permutation can be expressed as the product
of adjacent transpositions,(k, k + 1), we can confine our discussion to the representation
matrices for these. The representation matrices corresponding to the YY basis functions
are well known (see, for example, [3, 4, 7, 8]); those corresponding to theYY basis can
be constructed using the same approach after defining the basis using the combinatorial
technique ofjeu de taquindue to [9, 10].

2. Indexing the basis functions using jeu de taquinand the Young–Yamanouchi
symbols

The well known Young–Yamanouchi, or YY, symbols (described below) are generated from
tableaux by removing one box at a time from the Young tableaux, starting with the box
labelledn. To derive theYY symbols for theYY basis functions we remove the boxes from
the Young tableau one at a time starting with 1 instead ofn and filling the holes withjeu de
taquin at each stage.Jeu de taquinis a combinatorial technique that provides a means of
indexing theYY basis functions with a sequence of integers. This technique is due to [9, 10]
and is equivalent to the Robinson–Schensted algorithm [11].Jeu de taquinis a procedure
for removing boxes from any part of a Young tableau (not just the perimeter) and filling
the gap created so that the resulting object is a proper Young tableau. We describe it here
first, later using it to define the representation matrices in theYY basis.

Remove a box from the Young tableau. Examine the content of the box to the right
of the removed box and that of the box below the removed box. Slide the box
containing the smaller of these two numbers into the vacant position. Now repeat
this procedure to fill the hole created by the slide. Repeat the entire process until
no holes remain (i.e. the hole has worked itself to the perimeter of the tableau).

The tableaux of the YY basis are uniquely indexed by a sequence of integers, a so-called
Young–Yamanouchi symbol, defined in the following manner.

Locate the box containingn in the Young tableau. Remove that box and write
down the index of the row that contained that box. Repeat the procedure for
n − 1, n − 2, . . . , 2, 1. The list of integers is the YY symbol.

The basis functions of theYY basis are also indexed by Young tableaux, and can
similarly be indexed by a sequence of integers defined in the following manner.
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Locate the box containing 1 in the Young tableau. Remove it and fill the hole it
leaves usingjeu de taquin. Write down the index of the row from which a box is
ultimately removed after thejeu de taquin. Repeat this procedure for 2, 3, . . . , n.
The list of integers is theYY symbol.

The set ofYY symbols is, in fact, identical to the set of YY symbols. However, a given
Young tableau will, in general, have different YY andYY symbols. We say a YY symbol
and aYY symbol correspond if they are both generated by the same Young tableau.

We define a companion tableaux,T̃ , of T to be a tableaux such that theYY symbol
of T̃ is equal to the YY symbol ofT . The companion relation is a symmetric relation,
i.e. the YY symbol ofT̃ is equal to theYY symbol of T . We note that there is an object
called the dual tableau (see [12] pp 58–9 for details) which is defined such that the YY
symbols for it and for the original tableau are the same; however, the dual has the filling
rules reversed (i.e. each entry in the dual tableau has to be greater than the entry to the left
of or below it) and hence it would be necessary to usejeu de tacquinto obtain the YY
symbol. The dual tableau is, however, equivalent to our definition of companion tableau,
and the correspondence can be simply seen by reversing the order of the labels and the
order in which we remove the labels. The use of the companion rather than the dual has
the obvious advantage that the companion is within the original set of standard tableaux.

3. Representation matrices

The representation matrices indexed by the YY basis functions for adjacent transpositions
are well known [2, 3]. Descriptions of the entries are in terms of a tableau parameter called
axial distanceand defined as follows. Leti be the box of the tableau in rowri and column
ci , and letj be the box of the tableau in rowrj and columnscj . Then the axial distance
from i to j is (cj − rj ) − (ci − ri) ≡ τij . We also define the reciprocal of this,ρ := 1/τ .

Since we will be indexing matrices by Young tableaux, we first impose a total order on
the tableaux. Letλ be a partition. Take the set of all Young tableaux of shapeλ, and order
them using last-letter order, i.e. tableaux in which the largest letter occurs in a lower row
are later in the ordering. For example, forλ = 3, 2, see figure 3. The well-defined order of
the tableaux imposes an ordering upon the associated YY symbols and their corresponding
YY symbols. When we refer to the ordering of symbols it is this order to which we refer.
The ordering of a set of tableaux, YY, andYY symbols are given in figure 2.

The YY representation matrixMλ
(k−1,k) for the transposition(k − 1, k) for the

representationλ is defined as follows:
(1) Mλ

(k−1,k) has+1 in position(r, r) if in the rth YY symbol, the(n − k + 1)-th and
(n − k)th elements are identical (i.e. therth tableau hask − 1 andk in the same row).

(2) Mλ
(k−1,k) has a−1 in position (r, r) if in the rth YY symbol the(n − k + 1)-th

element,α, is one more than the(n − k)-th element,β, and there doesnot exist another
YY symbol that is identical to this YY symbol except that its(n − k + 1)-th element isβ
and its(n − k)-th element isα (i.e. therth tableau hask − 1 andk in the same column).

(3) Mλ
(k−1,k) has −ρ in position (r, r),

√
1 − ρ2 in positions (r, s) and (s, r) and ρ

in position (s, s), if r < s and therth and sth YY symbols are identical except that the
(n−k+1)-th element of therth YY symbol is the(n−k)-th element of thesth YY symbol
and vice versa (i.e. thesth tableau is obtained from therth tableau by interchangingk − 1
and k). As noted above,ρ is the reciprocal of the axial distance from the box containing
k − 1 to the box containingk in the rth tableau.

(4) 0 in all other positions.
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Figure 1. Example ofjeu de taquinon λ = 3, 2, 1. TheYY symbol is built up progressively
underneath the tableau at each stage.

(See [2, pp 41–9]; also [13, ch VI, pp 217–18]). An example is given in the appendix.

The YY representation matrixM
λ

(k−1,k) for the transposition(k − 1, k) for the
representationλ is defined as follows:

(1) M
λ

(k−1,k) has+1 in position(r, r) if in the rth YY symbol the(k − 1)-th andkth
elements are identical.

(2) M
λ

(k−1,k) has a−1 in position(r, r) if in the rth YY symbol the(k − 1)-th element,
α, is one more than thekth element,β, and there does not exist anotherYY symbol that is
identical to thisYY symbol except that its(k − 1)-th element isβ and itskth element isα.

(3) M
λ

(k−1,k) has−ρ in position (r, r),
√

1 − ρ2 in positions(r, s) and (s, r) and ρ in
position(s, s), if r < s the rth andsth YY symbols are identical except that the(k − 1)-th
element of therth YY symbol is thekth element of thesth YY symbol and vice versa,
whereρ is the reciprocal of the axial distance fromn−k +2 to n−k +1 in therth tableau.

(4) 0 in all other positions.
For an example, see the appendix.

The M
λ

(k−1,k) matrix is not as well known in the literature, although it has appeared in
[4, p 52] for a special case, and is easily derived by induction in a manner similar to [2,
pp 39–43] or [3, pp 215–23]. In doing so we can choose the representation matrices of the
YY basis to be related to the representation matrices of the YY basis by a permutation of
the basis functions,

PM
λ

(k−1,k)P
−1 = Mλ

(n−k+2,n−k+1). (1)

At the end of the previous section we stated that the lists ofYY and YY symbols,
ordered by the last-letter order of the tableaux, contain the same elements, possibly in a
different order. If we call those listsx and y, for the YY andYY symbols, respectively,
then

Pi,j = δ(xi, yj )

= δ(xj , yi)

whereδ is the Kroneckerδ function: δ(a, b) = 1 if a = b andδ(a, b) = 0 if a 6= b. Thus
we say that the ordered list ofYY symbols is carried to the ordered list of YY symbols by
the permutationP , and thatP takes each tableau to its companion tableau.
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Figure 2. Tableaux, YY symbols, andYY symbols forλ = 3, 2, 1.

4. Calculation of the transformation matrix

The transformation matrix is the matrixT such that

M
λ

(k−1,k) = T −1Mλ
(k−1,k)T ∀ k. (2)

It can be calculated simply in two stages and expressed as the product of two matrices,P

andQ. The first of these, theP matrix, is simply the permutation matrix that sends the set
of YY symbols to the set of YY symbols. The application ofP andP −1 to the right and

left sides ofM
λ

(k−1,k) brings it to the same form asMλ
(n−k+2,n−k+1).

P −1Q−1Mλ
(k−1,k)QP = M

λ

(k−1,k)

Q−1Mλ
(k−1,k)Q = PM

λ

(k−1,k)P
−1

= Mλ
(n−k+2,n−k+1)
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Figure 3. Example of tableaux of shapeλ = 3, 2 ordered by last-letter order.

as in equation (2), so that

Q−1Mλ
(k−1,k)Q = Mλ

(n−k+2,n−k+1). (3)

The problem then reduces to finding a transformation matrixQ between representation
matrices in the YY basis.

It is easily seen that theQ matrix is the representation matrix that sendsn, n−1, . . . , 2, 1
to 1, 2, . . . , n − 1, n. Q can be calculated directly from the representation matrices in the
YY basis for the adjacent transpositions, since it is well known that any permutationσ can
be expressed as a minimal length product of adjacent transpositions [2, p 6]. This minimal
length is the number of inversions, i.e. the number of distinct pairs(i, j) with i < j such
that σ(i) > σ(j). In particular, definedi = card{j |j > k whereσ(k) = i andσ(j) < i}.
Then the permutationσ can be written as

σ = . . . (τi−1τi−2 . . . τi−di
) . . . (τn−2τn−3 . . . τn−1−dn−1)(τn−1τn−2 . . . τn−dn

)

whereτi = (i, i + 1) and theith contribution is included only ifdi > 1.
In the case ofQ, the length of the product will be

(
n

2

)
and di = i − 1, 1 6 i 6 n.

Specifically, then,

Q =
n∏

i=2

1∏
j=i−1

(j, j + 1).

For our example ofλ = 3, 2, 1,

Q = (16)(25)(34)

= (12)(23)(12)(34)(23)(12)(45)(34)(23)(12)(56)(45)(34)(23)(12)

and the matricesP andQ are given in figures 4 and 5, respectively.

5. Conclusion

We have presented a simple, straightforward method for calculating the transformation
matrix between the YY basis and its dual, theYY basis. The matrix itself is easy to describe,
is intuitively pleasing, and is presented without the use of Young operator techniques. By
using the well known combinatorial technique ofjeu de taquin, the method presented here
further cements the link between combinatorics and mathematical physics. We anticipate
that further links are possible, and that using variations on the methods presented here, we
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Figure 4. The P matrix for λ = 3, 2, 1.

Figure 5. The Q matrix for λ = 3, 2, 1 calculated using Matlab.

would be able to calculate transformation matrices between more general bases of symmetric
groups, e.g. between two bases ofSn of the formSn1×Sn2×· · ·×Snl

, n1+n+2+· · ·+nl = n.
This will be the subject of future work.
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6. Appendix

Representation matrices forλ = 3, 2, 1 in the YY basis. The basis functions are ordered
according to the last-letter order of the tableaux, as given in figure 2.

(12) =

1
1

−1
1

−1
1

1
−1

1
−1

−1
1

−1
1

−1
−1

(23) =

1

− 1
2

√
3

2√
3

2
1
2

− 1
2

√
3

2√
3

2
1
2

1

− 1
2

√
3

2√
3

2
1
2

− 1
2

√
3

2√
3

2
1
2 −1

− 1
2

√
3

2√
3

2
1
2

− 1
2

√
3

2√
3

2
1
2 −1

(34) =

− 1
3

√
8

3√
8

3
1
3

1
1

−1

− 1
3

√
8

3√
8

3
1
3

1
−1

− 1
3

√
8

3√
8

3
1
3

1
−1

−1

− 1
3

√
8

3√
8

3
1
3

(45) =

1

− 1
2

√
3

2
− 1

2

√
3

2√
3

2
1
2√

3
2

1
2 −1

− 1
4

√
15
4

− 1
4

√
15
4√

15
4

1
4√

15
4

1
4

1

− 1
2

√
3

2
− 1

2

√
3

2√
3

2
1
2√

3
2

1
2 −1
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(56) =

− 1
2

√
3

2
− 1

2

√
3

2
− 1

2

√
3

2
− 1

4

√
15
4

− 1
4

√
15
4√

3
2

1
2√

3
2

1
2√

3
2

1
2

− 1
2

√
3

2
− 1

2

√
3

2
− 1

2

√
3

2√
15
4

1
4√

15
4

1
4√

3
2

1
2√

3
2

1
2√

3
2

1
2

Representation matrices forλ = 3, 2, 1 in theYY basis. The basis functions are ordered
according to the last-letter order of the tableaux, as given in figure 2.

(12) =

1
2

√
3

2
1
2

√
3

2√
3

2 − 1
2

1
2

√
3

2√
3

2 − 1
2

1
2

√
3

2
1
4

√
15
4√

15
4 − 1

4
1
4

√
15
4√

15
4 − 1

4√
3

2 − 1
2

1
2

√
3

2√
3

2 − 1
2

1
2

√
3

2√
3

2 − 1
2√

3
2 − 1

2

(23) =

1
2

√
3

2−1
1

− 1
4

√
15
4√

15
4

1
4

1
2

√
3

2√
3

2 − 1
2

− 1
2

√
3

2√
3

2 − 1
2

1
2

√
3

2√
3

2 − 1
2

− 1
4

√
15
4√

15
4

1
4 −1

1√
3

2 − 1
2
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(34) =

− 1
3

√
8

3√
8

3
1
3

1
3

√
8

3
1√

8
3 − 1

3 −1
1

1
−1

−1
1

1
3

√
8

3−1√
8

3 − 1
3

− 1
3

√
8

3√
8

3
1
3

(45) =

1
2

√
3

2−1
−1

1
2

√
3

2
1
2

√
3

2√
3

2 − 1
2

− 1
2

√
3

2
− 1

2

√
3

2√
3

2 − 1
2√

3
2

1
2

1
2

√
3

2√
3

2 − 1
2√

3
2 − 1

2
1

1√
3

2
1
2

(56) =

−1
−1

−1
−1

−1
1

1
1

−1
−1

−1
1

1
1

1
1
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